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Abstract

State-of-the-art practical algorithms for solving large Set
Cover instances can all be regarded as variants of the
GREEDY Set Cover algorithm. These algorithms maintain
the input sets in memory, which yields a substantial memory
footprint. In particular, in the context of massive inputs,
these sets may need to be maintained on the hard disk or on
external memory, and, consequently, access to these sets is
slow.

In this paper, we demonstrate that simple one-pass al-
gorithms with small memory footprints are able to compete
with the more involved GREEDY-like algorithms for Set Cover
in practice. Our experiments show that a recent Set Cover
streaming algorithm by Emek and Rosén [ACM Trans. on
Alg. 2016] produces covers whose sizes are on average within
8% of those produced by state-of-the-art algorithms, while
using between 10 and 73 times less memory.

We also provide a theoretical analysis of an extension of
the EMEK-ROSEN algorithm to multiple passes and demon-
strate that multiple passes allow us to further reduce cover
sizes in practice.

1 Introduction

Given a collection S of m sets containing elements from
some universe U of size n, the Set Cover problem is
to find a smallest subcollection A C S that covers the
entire universe, i.e., Jgc 4 S = U. This fundamental
problem arises at the heart of many practical applica-
tions, including document retrieval [1], test suite reduc-
tion [28] and protein interaction prediction [I8] to name
a few. The ubiquity of Set Cover stems from the ab-
stract nature of its input. In the domain of connected
data, Set Cover can be equivalently expressed in terms of
hypergraphs, where vertices comprise the universe and
hyperedges comprise the set collection. For graphs, a
solution to Set Cover over the collection of edges results
in a minimum Edge Cover, and a solution of Set Cover
over the inclusive neighborhoods of the vertices results
in a minimum Dominating Set.

The Set Cover problem is known to be NP-hard to
solve exactly [20], and also NP-hard to approximate to
within a factor of (1 —o(1))lnn [8, [[I]. The GREEDY
Set Cover algorithm, which produces a (Inn — Inlnn +
©(1))-approximate solution [25], is therefore essentially
optimal from a theoretical perspective. Intuitively,
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GREEDY repeatedly adds to the solution the set with
the most as-yet-uncovered elements, terminating when
the universe is covered. This simple algorithm clearly
runs in polynomial time, and has been shown to perform
well in practice [I5], [I6]. However, the non-trivial task
of efficiently finding the set with the most uncovered
elements means GREEDY (1) requires space linear to
the size of input; (2) has an arbitrary memory access
pattern; and (3) proves awkward to implement in
practice, requiring multiple ancillary data structures.
As arbitrary access to disk is typically SIOWE GREEDY
does not scale well to data sets whose sizes exceed
the capacity of the available Random Access Memory
(RAM). For this reason, a focus of recent research has
been to find memory efficient algorithms with close-to-
optimal approximation guarantees.

Cormode et al. [6] propose DIsk FRIENDLY
GREEDY (DFG), a variant of GREEDY which instead
adds sets to the solution if they have an uncovered el-
ement count that is close to maximal. This relaxation
does not have a significant impact on the approxima-
tion factor, and affords a mostly sequential memory ac-
cess pattern which greatly improves the efficiency of in-
teractions with disk. Cormode et al. also demonstrate
that DFG performs well in practice, producing solutions
of a similar size to GREEDY and, for the larger data
sets, in a fraction of the time. Lim et al. [23] explore
the in-memory implementation options of GREEDY in
greater detail, and introduce LAZY GREEDY, a variant
of GREEDY which has a smaller memory footprint at
the cost of occasional set difference recomputations. An
equivalent algorithm is also described in [26]. Though
these algorithms have similar approximation factors to
GREEDY, they still require access to space linear to
the size of input, be it RAM, disk or external mem-
ory. As accessing disk is, in most circumstances, orders
of magnitude slower than accessing RAM, the perfor-
mance of GREEDY-like algorithms declines when applied
to problem instances whose size necessitates disk resi-
dence, even if the access pattern is mostly sequential.

To quickly process such data sets, we can instead
consider Set Cover under the data streaming model,

TWe use disk as a general term to refer to the class of storage

devices secondary to RAM.
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where algorithms are permitted only sequential access to
the problem instance set collection, and must produce
a solution using working memory of size sublinear to
the size of the input. In 2014, Emek and Rosén [9] (see
also [10]) presented the first one-pass streaming algo-
rithm for Set Cover, which gives an O(y/n)-approximate
solution using 5(71) space This work received con-
siderable attention in the algorithms research commu-
nity and led to a large number of follow-up works
(e.g., [7 B, 17, 4, 2] 19]), giving algorithms with dif-
ferent characteristics and space lower bounds.
Small-space streaming algorithms for Set Cover in-
herently have a worse approximation guarantee than
GREEDY and the aforementioned GREEDY-like state-of-
the-art algorithms. For example, it is known that p-pass
algorithms (for any constant p > 1) with space complex-
ity 6(71) cannot have an approximation ratio smaller

than @(nﬁ) [], which implies that the approximation
factor of O(y/n) of the (O(n)-space) EMEK-ROSEN algo-
rithm is optimal. Improving on the approximation fac-
tor of O(y/n) in a single pass requires much more space:
one-pass C-approximation algorithms, for C = o(y/n),
require Q(nm/C) space [3].

In this paper, we ask whether the recent (theo-
retical) streaming algorithms for Set Cover are able to
compete with the state-of-the-art algorithms in prac-
tice. The obvious advantage of the streaming approach
is the sublinear memory usage. In addition, streaming
algorithms are typically conceptually simple which gives
reason to hope that such algorithms yield fast runtimes
in practice. As mentioned previously, streaming algo-
rithms for Set Cover have worse theoretical approxima-
tion guarantees than the state-of-the-art GREEDY-like
algorithms, though past empirical Set Cover evaluations
observed that theoretical guarantees do not well predict
practical solution sizes [I5, [I6]. Our aim is therefore
to determine whether this theoretical solution size dif-
ference is significant in practice, and to learn the ex-
tent of working memory savings afforded by employing
a streaming approach. Depending on the application,
savings in RAM usage may well outweigh marginally
larger solutions.

Our Contributions In this paper, we conduct an
empirical evaluation of the EMEK-ROSEN algorithm [10]
and compare its performance on practical instances to
the DFG algorithm by Cormode et al. [6]. To the best
of our knowledge, we are the first to evaluate one of the
recent theoretical Set Cover streaming algorithms. We
remark that, among the known streaming algorithms,
the EMEK-ROSEN algorithm and the PROGRESSIVE

2We write 6() to mean O(-) with poly log factors suppressed.
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Figure 1: An example instance of Set Cover. Here, U =
{A,B7C',l),E‘,F‘7 G, I’I7 I} and § = {50751752753,54},
where So = {A4,B,F,G}, S1 = {A,B,D}, S; =
{C,D,E}, S3={H,I} and Sy = {E, F,G}.

GREEDY algorithm by Chakrabarti and Wirth [4] stand
out as potentially competitive practical algorithms,
since they are deterministic, simple, and use the least
space. We also include PROGRESSIVE GREEDY in
our experiments, showing that the produced covers
are larger than those obtained by the EMEK-ROSEN
algorithm.

Our experiments show that the EMEK-ROSEN algo-
rithm produces solution sizes which are on average 8%
larger than those produced by DFG, while using only
1.4% to 9.9% of the memory required by DFG on our
input data sets. In passing, we also show that the ap-
proximation ratio of the EMEK-ROSEN algorithm can
be expressed in terms of A, the size of the largest set,
showing that the algorithm has an approximation ratio
of at most 4v/2v/A. We note that in practical instances
A is typically much smaller than n and is therefore the
more relevant parameter. Last, we extend the EMEK-
ROSEN algorithm to multiple passes. We show that p
passes, for constant p, yield an approximation factor of
O(Aﬁ), which is known to be optimal up to constant
factors [4]. We demonstrate that multiple passes allow
us to further narrow the gap in solution sizes between
the EMEK-ROSEN algorithm and DFG in practice.

2 Preliminaries

2.1 Problem Definition An instance of the Set
Cover problem is defined over a universe U, where || =
n. Given a collection S of m sets {So, S1, ..., Sm—1},
where S; C U for all 0 < i < m and Jgcg = U, the aim
is to find a smallest set A C S such that (Jgc 4 S = U.
The size of the largest set in the instance is denoted
by A, and the combined size of all sets is denoted by
M = 3 ¢c51S|. We hereafter assume, without loss of
generality, that each set S € S is associated with an
identifier id(S) of size O(logm) bits. A solution to Set
Cover is therefore given as a collection Z of identifiers,
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where {S € § |1d(S) € T} = A. We refer to the optimal
solution to any given Set Cover instance as Opt.
Figure[I]shows an example instance of the Set Cover
problem with n =9, m =5, A =4 and M = 15. In
this instance, {S, 52,53, 54} is a cover of U, however
the smallest cover, and hence the optimal solution to
the Set Cover problem in this context, is {Sg, Sa, S5}

2.2 Streaming A stream is a sequence of data points
which arrive as input to an algorithm one at a time.
Since the size of this stream is often unknown (size is
typically only discovered upon arrival of the final data
point) or very large, a complete history of the stream
cannot necessarily be stored in memory. For this reason,
streaming algorithms maintain some internal summary
of the visited portion of the input in space sublinear—
and ideally polylogarithmic—to the size of the stream.
As the whole input does not reside in memory, a
second pass over the stream would be required to access
data points which have already been visited; additional
passes such as this are permitted in the context of multi-
pass algorithms. In contrast, a one-pass algorithm is
constrained to a single traversal of the stream.

Considering the Set Cover problem under the
streaming model, the set collection S forms the input
stream, with the set S; arriving at time ¢. It is not al-
ways possible to approximate Set Cover in polylogarith-
mic space; we realise this by observing that O(nlogm)
bits of space is required simply to store a solution. We
therefore consider an algorithm to be space efficient if
it uses only O(npolylog(n,m)) = O(n) bits of space,
and refer to such an algorithm as a semi-streaming al-
gorithm [12] [10].

Algorithm 1: GREEDY Set Cover
input : A collection of sets S
output: A covering collection of identifiers 7
I,C 0
while C # U do
i <— i’ which maximises |S; \ C|
T+ 70U{id(S;)}
C+CUS;
return 7

=

[=>I< SNE )

3 Greedy and Greedy-Like Algorithms

The GREEDY algorithm for Set Cover is formally given
in Algorithm[I}] The algorithm maintains a collection C
of covered elements, initialised to the empty set. Until
every universe element is present in C, the algorithm
finds the set S; containing the most uncovered elements,
then adds the identifier of S; to Z, and updates C to

include all elements in S;. This simple algorithm leaves
implementation details unspecified, including how to
find the set containing the most uncovered elements.
This task is non-trivial, as the uncovered element count
of each set may change after the collection of covered
elements is updated.

A simple approach to this task would be to repeat-
edly iterate through the problem instance set collection,
noting the identifier of the set with the most uncovered
elements for each pass. This method accesses memory
sequentially, however, in the worst case, m traversals
of the problem instance would be required. Under the
reasonable assumption that membership of C' can be
checked in constant time, this method would require
O(Mm) time—this is clearly inefficient.

An alternative solution would be to maintain a
priority queue storing the uncovered element counts
of each set. At each execution step, the set at the
head of the queue would be added to the solution,
and, after updating C, all other sets which contain
those elements freshly included in C' would need their
priority queue entries updating. This can be achieved
with an inverted index: a precomputed data structure
which stores for each element the identifiers of the sets
in which it is included. This inverted index requires
O(M log m) additional bits of space, effectively doubling
the space usage of the algorithm. Assuming that each
change to the priority queue occurs in O(logm) time,
this approach has a time complexity of O(M logm),
which can be further improved to O(M) with a more
involved implementation [23].

LAazy GREEDY, a variant of GREEDY first described
by Lim et al. [23] and later reinvented by Stergiou and
Tsioutsiouliklis [26], forgoes the use of an inverted index
by updating the priority queue only when necessary. At
each execution step, the uncovered element count of the
set at the head of the priority queue is checked; if the
value stored in the priority queue is accurate, then this
set is added to the solution and C' is updated. If not,
then the set is reinserted into the priority queue with
the updated uncovered element count. This process
repeats until all elements are covered. Though the
space required by this approach is roughly half that
of the inverted index implementation, the number of
main loop iterations is no longer bounded by m, and
the total number of times that sets are compared with
C is no longer bounded by M. Lim et al. show that
there exists an adverserial Set Cover instance of size
M on which LAzy GREEDY expends ©(M?*/3) time,
but observe that such instances rarely occur in practice.
They also demonstrate empirically that LAZy GREEDY
runs faster than the inverted index approach on typical
large problem instances.
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Both the inverted index and lazy implementations
of GREEDY have a predominantly arbitrary memory
access pattern. While this is fine for data sets small
enough to reside fully in RAM, the overheads asso-
ciated with arbitrary access to disk mean these algo-
rithms run painfully slowly on larger-than-RAM data
sets. Cormode et al. [6] address this problem, introduc-
ing Disk FRIENDLY GREEDY (DFG), a GREEDY-like
algorithm which accesses memory in large contiguous
chunks. DFG employs a bucketing approach with gran-
ularity controlled by an input parameter p. In a pre-
processing sweep of the input, each set is placed in a
bucket, such that the sets in the & bucket have size
between p* (inclusive) and p*+1 (exclusive). Depending
on the size of the problem instance, these buckets can be
stored either in RAM or in files on disk. DFG then pro-
cesses each bucket in sequence, starting with the bucket
holding the largest set. For each set in the bucket, the
uncovered element count is first computed, after which
the set is added to the solution if this value is at least p*.
If not, then the uncovered elements are removed from
the set, and the set is then demoted to the bucket asso-
ciated with its new cardinality. This repeats until only
the bucket with k& = 0 remains; sets in this bucket are
added to the solution if they contain a non-zero num-
ber of uncovered elements. Though DFG is no longer
guaranteed to choose the set with the most uncovered
elements at each execution step, it has an approxima-
tion factor of 1 + plnn, which is only marginally worse
than the approximation guarantee of GREEDY. In prac-
tice, the solutions produced by DFG are very similar in
size to those given by GREEDY [0].

Importantly, the largely sequential memory access
pattern of DFG means interactions with disk are quite
efficient, so DFG scales to data sets whose sizes exceed
the capacity of RAM better than the other approaches
described. Despite this, DFG still maintains an ancil-
lary data structure of size linear to the size of input,
and when this structure resides on disk, accessing it is
inherently slower than accessing RAM (sometimes by
orders of magnitude), even when accessing sequentially.

4 Emek-Rosén Algorithm

We now turn our attention to streaming algorithms,
which are able to solve larger-than-RAM Set Cover
instances without the use of disk. Specifically, we
consider the recent theoretical one-pass semi-streaming
algorithm introduced by Emek and Rosén [I0]. This
algorithm is designed to solve the weighted Set Cover
problem, a generalisation of Set Cover which admits
element costs and set benefits. As we address the
unweighted Set Cover problem here, we describe a
version of the algorithm that is simplified for our
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Figure 2: Effective subset example.

context. The algorithm is conceptually simple and easy
to implement, and is well suited to problem instances
which naturally take the form of a stream, such as real-
time data or data received over a network.

The EMEK-ROSEN algorithm uses a simple heuristic
to build a small in-memory summary of the sets as
they arrive in a stream. For each element z € U,
the algorithm maintains an integer effectiveness and
an effectiveness identifier, denoted eff(z) and eid(x)
respectively. Intuitively, eid(z) stores the identifier of
the set which is currently covering x, and eff(x) aims
to quantify the quality of this set. As the values
of eid(x) and eff(x) change throughout execution, we
define eid;(z) and eff;(z) to be the values of eid(z) and
eff(z) respectively at time ¢, i.e., just before the set
S; € S is processed. The following two definitions are
central to the algorithm.

DEFINITION 4.1. (LEVEL) The level of some set S is
defined as
lev(S) = [log, |S]].

DEFINITION 4.2. (EFFECTIVE SUBSET) A subset T C
Sy is said to be effective at time t if and only if all
elements in T have an effectiveness strictly less than
the level of T. Formally,

T Cegg, S¢ iff. Vz €T, effy(z) < lev(T).

Figure [2| shows an example of an effective subset. Here,
S = {A,B,C,D,E,F,G,H}, and the effectiveness
values corresponding to these elements are given. The
underlined elements together form the effective subset
{A,C,D,E,H}. Indeed, this is the largest effective
subset in this example: if any other elements were added
to this subset, the level would not increase, and thus the
subset would cease to be effective.

Rather than returning a solution as a list of identi-
fiers, the algorithm returns a cover certificate x, which
is a mapping from universe elements to set identifiers.
More formally, x is a total function with domain I/ and
codomain {id(S) | S € S} where if x(x) = id(S), then
x € S. The image of x, which is given by

Im(x) = {id(S) | 3= € U such that x(z) =id(S)},

is equivalent to Z, the set of identifiers which together
cover S.

The EMEK-ROSEN algorithm is formally given in
Algorithm [2| Execution starts by initialising the effec-
tiveness and effectiveness identifier values; this step is
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Algorithm 2: EMEK-ROSEN Set Cover
input : A set stream S
output: A cover certificate and an
effectiveness map
Vo € U: eid(z) « NULL; eff (z) + —1
fort <+ 0tom—1do
Read the set S; from S
T < T Cesr, S; which maximises |T”|
foreach x € T do
eid(z) < id(Sy)
eff (z) « lev(T)
return eid(-) and eff(+)

=

® g o AW N

done implicitly in practice. Then, sets are read from
the stream one by one, with the set S; being read at
time ¢. When considering the set Sy, an effective subset
T Ceg, St is first found with maximum cardinality, after
which for each € T the effectiveness of x is set to the
level of T, and the effectiveness identifier is set to that
of S;. Intuitively, this means the set S; is only added to
the cover certificate if it contains a subset T' C S; where
the size of T is at least a factor of 2 greater than the
size of the subsets previously designated to covering the
elements in T'. The algorithm proceeds in this way until
the stream terminates, at which point it returns the re-
sulting cover certificate (alongside the final effectiveness
values if desired).

To find the largest effective subset T' C S;, Emek
and Rosén present Observation and suggest sorting
S; by descending effectiveness.

OBSERVATION 4.1. If T Ce, S; and x € T, then
T U {y} is effective at time t for every y € S; such
that effy (y) < effy(x).

When subsequently iterating through the sorted list, the
first encountered effective element defines the starting
point from which the list tail equals 7. Due to the initial
sort, this method processes the set S; in O(]S;|log |St|)
time. Simplifying the EMEK-ROSEN algorithm to our
unweighted context allows us to improve upon this
asymptotic bound. To this end, we establish two further
observations, the first of which does not apply in the
context of weighted Set Cover.

OBSERVATION 4.2. For all 0 <t <m and x € U, we
have —1 < effy(x) < [log, A]. Furthermore, effi(x) is
integral.

OBSERVATION 4.3. If © € S; and effy(z) > lev(Sy),
there exists no subset T Ceg, Sy where x € T'.

By Observation[f.2] effectiveness values are integral and
bounded from above and below, so we can find the max-

imal effective subset T' C S; in linear time by iterating
over the frequency distribution of the effectiveness val-
ues in S;. Specifically, a counter array of size lev(S;) +1
can be populated with an initial pass over S, such that
the (i+1)*" value of the array corresponds to the number
of elements in S; with effectiveness ¢ (the offset accounts
for effectiveness values of —1). Per Observation any
effectiveness which is beyond the bounds of this counter
array can safely be omitted. Then, to obtain a map-
ping of effectiveness values to would-be subset sizes, a
cumulative sum of this counter array can be computed.
With this mapping, the largest effectiveness value which
is exceeded by the level of its corresponding sum be-
comes the critical effectiveness; in a final pass over S,
all elements whose effectiveness is at most this criti-
cal value are added to the resulting subset. Finding
the maximal effective subset with this asymptotically
favourable method allows the EMEK-ROSEN method to
run in O(M) time. We also note that the additional
space required by this approach is negligible: to process
a set, a number of bits polylogarithmic to the size of the
set are required.

4.1 Approximation Factor Applying the EMEK-
ROSEN algorithm to the simplified context of un-
weighted Set Cover also allows for a slightly improved
approximation factor. To see this, we reuse two key
lemmas given by Emek and Rosén in their analysis of
the algorithm [I0]. We start by introducing relevant
definitions, in which eff, (z) denotes the value of eff(x)
for some x € U upon termination of the input stream.

DEFINITION 4.3. (I(r)) For somer € Z, let
I(r)={z eU | effs(x) =1}
DEFINITION 4.4. (S(r)) For somer € Z, let
S(r)={S €S| 3z e I(r)st. eid(z) =1id(S)}.

Definition and Definition [£.4] are extended to the
real interval [a, b] as follows:

I([a,b])) ={z eU | a < effos(z) < b}, and
S(la, b)) ={S € S| 3z € I([a,b]) s.t. eid(z) =1d(S5)}.

The real intervals (—oo, 7] and (r, 00) are denoted by < r
and > r respectively. We now give the two key lemmas,
which have been modified to be defined over the real
numbers. It is easy to see that the original proof of
the first lemma by Emek and Rosén also applies to real
numbers without modifications. Besides allowing for
real numbers, the second lemma has also been simplified
by observing that |Opt| > n/A and |I(> [log, A])| = 0.
For completeness, we provide a proof of the second
lemma in Appendix [A]
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LEMMA 4.1. For somer € R,
[I(<r)| < ortl. |Opt].
Proof. See [10]. 0

LEMMA 4.2. For some r € R,

A

Proof. See Appendix [A] O

The approximation factor can now be established.

THEOREM 4.1. The cardinality of the solution pro-
duced by the EMEK-ROSEN algorithm is within a factor

4V2VA of |Opt|.

Proof. Consider some r € R. By combining the bounds
of the solution subsets addressed in Lemma 1] and
Lemma and noting that |S(r)| < |I(r)| for all r,
the cover certificate x returned by the EMEK-ROSEN
algorithm satisfies

A
Im(x)| < (27““ +5s - 1) - |Opt]|.
This approximation factor is minimised, i.e.,

A ) A
a(27‘+1+ _1>:<27"!‘1_2T2)1112:07

or 2r—2
when r = log, V2A. With this r, it follows that

IIm(y)| < (4\/5\/5 - 1) - |0pt|. O

5 Evaluation

We now demonstrate the practical performance of the
EMEK-ROSEN algorithm on typical Set Cover instances.

5.1 Data Sets For our empirical analysis, we use six
benchmark data sets, detailed in Table Of the six
files, accidents.dat, kosarak.dat and webdocs.dat come
from the Frequent Itemset Mining Dataset Repository
and have previously been used by Cormode et al. [6] for
the evaluation of the DFG algorithmﬂ The remaining
three come from the Stanford Large Network Dataset
Collection [ All files have been modified to fit the same
format: a text file with one set to a line (terminated
with a line feed), where the elements are space delim-
ited integers. Additionally, the elements of each data
set were mapped in order of appearance to the contigu-
ous interval [1,n] for consistency. The twitter.dat and

Shttp://fimi.uantwerpen.be/data/
4https://snap.stanford.edu/data/

friendster.dat files, which originally encoded (directed
and undirected, respectively) graphs as edge lists, have
both been reformatted to Set Cover instances whose so-
lutions are a Dominating Set of the respective networks.
We define for some set S the value id(S) to be its po-
sition in the problem instance file, indexed from 0; a
solution can therefore be given in a text file as a newline-
separated list of set indices.

5.2 Experimental Setup C++ implementations of
RAM-based DFG, disk-based DFG and the EMEK-
ROSEN algorithm were prepared; these were compiled
with G+4 using the -02 optimisation flag. All ex-
periments were performed on a 2.4GHz Intel Core i5
machine running macOS Mojave 10.14.6, with 4 cores,
256KB L2 cache (per core), 6MB L3 cache, 16GB RAM
and 512GB SSD.

To ensure only the required resources are used dur-
ing execution, the implementations assume prior knowl-
edge of the necessary problem instance parameters. The
universe elements and set indices are stored as 4-byte
integers and, for the EMEK-ROSEN implementation, ef-
fectiveness values are stored as 1-byte integers. The
EMEK-ROSEN implementation computes a maximal ef-
fective subset using the linear time approach we describe
in Section [l A bit vector is used to maintain the set
of covered elements for the DFG algorithms. For each
algorithm, we measured the output solution size, to-
tal execution time, and peak RAM usage. The exe-
cution time encompasses all necessary algorithm steps,
including reading the problem instance from disk, the
DFG bucketing preprocess, and the time taken to ex-
tract a list of identifiers from the cover certificate given
by the EMEK-ROSEN algorithm. The non-essential task
of writing the solution to disk is excluded from the total
execution time for all algorithms.

5.3 Results We present the results of a comparison
between RAM-based DFG (with p = 1.001) and the
EMEK-ROSEN algorithm in Table For the largest
file (friendster.dat), RAM-based DFG had not found a
solution after 6 hours. This is as a result of the problem
instance exceeding the capacity of RAM: the abstraction
to virtual memory means the implementation effectively
uses portions of disk as an extension to RAM, at the cost
of significantly slower arbitrary access.

From these results, some clear patterns emerge.
Firstly, solutions produced by the EMEK-ROSEN algo-
rithm are of a slightly lower quality than those given
by DFG: EMEK-ROSEN covers are 18% larger in the
worst case (accidents.dat), 2% larger in the best case
(webdocs.dat), and 8% larger in the (geometric) aver-
age case. However, the differences in resource usage are

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited


http://fimi.uantwerpen.be/data/
https://snap.stanford.edu/data/

Number of sets

File name Credit File size (MB) n m M A
accidents.dat 141 [13] 35.17 468 340183 11500870 51
kosarak.dat 14] 32.05 41270 990002 8018988 2497
orkut-cmty.dat  [22] [24] 27] 805.44 2322299 15301901 107080530 9120
webdocs.dat 141 [5] 1481.89 5267656 1692082 299887139 71472
twitter.dat 22, 21] 12576.85 41652230 40103281 1508468165 2997470
friendster.dat 22, 27] 32353.29 65608366 65608366 3677742636 5215

Table 1: Benchmark data set statistics.

File name Cover size Time (s) Peak RAM (MB)
DFG EMEK-ROSEN | DFG EMEK-ROSEN DFG EMEK-ROSEN
accidents.dat 181 213 1.43 0.72 66.65 0.91
kosarak.dat 17741 18618 1.03 0.79 75.45 2.37
orkut-cmty.dat 149244 158439 15.44 12.35 | 1094.59 21.67
webdocs.dat 406 338 413819 | 18.39 15.51 | 1401.55 56.04
twitter.dat 9246 029 9955112 | 213.48 158.35 | 8044.29 797.70
friendster.dat - 13310036 - 367.52 - 1183.56

Table 2: A comparison between RAM-based DFG (p = 1.001) and the EMEK-ROSEN algorithm.

File name Cover size Time (s) Peak RAM (MB) Peak disk (MB) Disk I/O (MB)
accidents.dat 183 2.55 1.22 51.62 173.65
kosarak.dat 17746 1.57 2.16 40.00 86.41
orkut-cmty.dat 149239 21.66 4.69 551.03 1404.53
webdocs.dat 406 375 27.69 8.81 1213.09 2698.33
twitter.dat 9246 096 238.25 146.69 6356.30 17753.60
friendster.dat 10616 833 670.17 120.15 15373.80 48 667.50
Table 3: Disk-based DFG results (p = 1.065).
140 140 140
120 £ 120 £ 120
100 - < 100 - < 100 +
80 - 80 C 80-
60 - 260 260
40 + % 40 + % 40 +
20 “ 20 “ 20
0 0 0

01234567289

Contribution

(a) DFG (p = 1.001)

0123456789

Contribution

(b) EMEK-ROSEN

0123456789
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(c) MurTI-PAass EMEK-ROSEN

Figure 3: Cover contribution distributions, truncated at 10, for the file accidents.dat.
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more pronounced, strongly favouring the EMEK-ROSEN
algorithm. EMEK-ROSEN used 73 times less RAM than
DFG in the best case (accidents.dat), and 10 times less
RAM in the worst case (twitter.dat), which is still an im-
provement of an order of magnitude. EMEK-ROSEN was
also successfully able to process friendster.dat—which
was intractable for RAM-based DFG on our machine—
using only 1.2GB of RAM. In terms of speed, EMEK-
ROSEN is consistently faster than DFG, but only by a
small margin. Specifically, the EMEK-ROSEN algorithm
finds a solution in 50% of the time taken by DFG in
the best case (accidents.dat), 84% of the time taken by
DFG in the worst case (webdocs.dat), and 72% of the
time taken by DFG in the average case.

We also applied disk-based DFG—which stores the
set buckets in files, with one file per bucket—to each
of the problem instances, and present the results in
Table [} To guarantee that the limit of 253 open
files (imposed by the operating system) is not exceeded
during execution, we select p = 1.065 which satisfies
p > A/253 for all values of A in the benchmark data
set collection. In addition to the usual metrics, we also
measure peak disk usage (discounting the storage of
the problem instance and solution) and disk I/O: the
number of bytes read from and written to disk (not
including the initial reading of the problem instance,
or the writing of the solution). In the context of disk-
based algorithms, disk I/O serves as a better indicator of
performance than time, as it is invariant to hardware.
At the expense of using 13 times more memory than
EMEK-ROSEN and exchanging 49GB of data with the
disk during execution, disk-based DFG was able to
process friendster.dat and produce a solution whose size
is 20% smaller than that given by EMEK-ROSEN.

6 Multi-Pass Emek-Rosén

In comparison to DFG, the EMEK-ROSEN algorithm
typically includes in the solution a higher number of sets
which cover only a few elements, leading to larger cover
sizes. To demonstrate this, it is useful to first define the
contribution of a set to be the number of elements for
which this set is the designated coverer. In the context
of EMEK-ROSEN, the contribution of a set S can be
found by evaluating |[{z € U | eid(z) = id(S)}| after the
algorithm has terminated. For DFG, the contribution
of a set is given by the number of as-yet-uncovered
elements it contains at the point which it is added to
the solution. By direct comparison of Figure [3a] and
Figure which show the distribution of contributions
for solutions given by DFG and the EMEK-ROSEN
algorithm respectively, we observe that the EMEK-
ROSEN cover contains more sets which contribute only
one or two elements.

Algorithm 3: MULTI-PASS EMEK-ROSEN
input : A set stream S, a pass count p, and a
threshold value r; for each 1 < j <p
output: A cover certificate and an
effectiveness map
1 Vz € U: eid(z) < NULL; eff(z) + —1
for j «+ 1to pdo
/* Do an EMEK-ROSEN pass */
for t + 0tom—1do
Read the set S; from S
Sé — St nu
T < T' Ceqr, S; which maximises |T”|
foreach z € T' do
eid(z) « id(Sy)
eff () < lev(T)
/* Restrict the universe */
10 foreach = € U do

(M)

© 00 N o AW

11 if j = p or eff(xz) > r; then
12 | U+ U\A{x}

13 else

14 | eff(z) « -1

15 return eid(-) and eff(-)

To better cover these elements at the lower end of
the contribution distribution, we present in Algorithm 3]
MULTI-PASS EMEK-ROSEN, a generalisation of the orig-
inal algorithm which makes multiple passes over the in-
put stream. On the first pass, normal EMEK-ROSEN
is applied to the set stream. Then, the universe is re-
stricted to a subset of the original, such that all ele-
ments in this restricted universe have an effectiveness of
at most some threshold value ;. Only those sets cover-
ing the elements not in this restricted universe remain
in the cover certificate. The EMEK-ROSEN algorithm
is then applied on the second pass, this time omitting
all elements not in the restricted universe, after which
the universe is again restricted with the slightly lower
threshold 73, and so this recursive approach continues
for a total of p passes.

We note that a solution set can be obtained during
execution without post-processing the cover certificate:
if we aggregate the identifiers of those sets responsible
for covering the elements excluded from the universe on
line [I2] this is equivalent to the resulting cover.

6.1 Approximation Factor We now establish the
approximation factor of MULTI-PASS EMEK-ROSEN.

THEOREM 6.1. The cardinality of the solution pro-
duced by p-pass EMEK-ROSEN is within a factor 8(p +
AP+ of |Opt|.
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Proof. We prove this by induction.

Induction hypothesis. For some p > 1, p-pass EMEK-
ROSEN produces a solution within a factor a, of |Opt|,
where a,, = (p + 1)87/(PFDA/(p+1) _y)

Base case. Let us first consider the base case p = 1.
The predicted approximation factor «; is given by

oy = (14 1)8YAFDAYA+D) 1 — 4/2V/A -1,

which matches the approximation factor given in The-

orem M1

Induction step. Assume the induction hypothesis is
true for p = k, i.e.,

ag = (k+ 1)85/ DALY/ (+D) g

We now show that the induction hypothesis holds for
p=k+1.

Consider some threshold » € R. In the first of our
k + 1 passes, we keep only those sets in S(>r) in our
final solution Im(x), leaving the subproblem of finding
a cover for the remaining subuniverse I(< r). As we
have k passes remaining, we now apply k-pass EMEK-
ROSEN to this subproblem, which we know under our
assumption produces a solution of size less than

(0 + 1)85/ B+D A/ 04 — ) - [Opty |,

where Ay corresponds to the maximum number of
elements in I(<r) contained in a single set and Opt, is
the optimal covering of I(<r) which satisfies |Opty| <
|Opt|. We know that every set contains fewer than 27+1
elements of I(<r), therefore Ay < 271, Considering
this alongside Lemma [£.2] it follows that

|Im(x)| < ((k+ 1)8k/(k+1) (2r+1)1/(k+1)

A
—k+w—1> -|Opt|.

This approximation factor is minimised, i.e.,

9 K/ (k r1\ 1/ (k1) A
w((k+1)8 /EHD) (or ) —kt g1

_ (8k/(k+1) (2r+1)1/(k+1) _ 27~A—2> n2
=0,
when the threshold r is set to
(k+1)logoab A+1—k
k+2
With this threshold, and after some simplification,

[Tm ()| < ((k + 2)8Uk+ D/ (k2 AT/ (h42) _ | 1) - |Opt|

= Of+1 |Opt|a

thus showing that a1 indeed holds.

Conclusion. We have shown that p-pass EMEK-ROSEN
produces a solution that satisfies

[Tm(x)| < ((p +1)8p/ AL/ D) p) -|Opt]
< (8 + 1A - jopt,
which completes the proof. 0

Naturally, this approximation factor relies on selecting
the appropriate threshold value r; for the 4 pass.
Though we omit the proof here for the sake of brevity,
we find by induction that the approximation factor
given in Theorem [6.1]is achieved when

ri=((p—Jj+1)loge A+3j—p—1)/(p+1).

Chakrabarti and Wirth [4] show that a semi-
streaming algorithm cannot achieve an approximation
factor better than 0.99n'/®+1)/(p + 1)2, thus MuLTI-
Pass EMEK-ROSEN is essentially tight up to a factor of
8(p+ 1)3. They also introduce PROGRESSIVE GREEDY,
a multi-pass semi-streaming GREEDY-like algorithm for
Set Cover. During the j*' of p passes, PROGRESSIVE
GREEDY adds to the solution all sets whose uncovered
element count is at least some threshold 7;. The algo-
rithm also folds the final two passes into one by noting
sets with a non-zero contribution during the would-be
penultimate pass and merging these into the solution
as a post-processing step. With 7; = n'=7/(P+1) they
show that PROGRESSIVE GREEDY is a (p + 1)n!/(P+1).
approximation algorithm for Set Cover; we note that
this bound also holds for A when 7; = A1=3/(P+1) ‘e
solutions given by PROGRESSIVE GREEDY are at most a
factor (p-+1)AY/+1) larger than |Opt| with this thresh-
old. Though this is favourable to the result of our analy-
sis of MULTI-PASS EMEK-ROSEN by a constant factor,
the performance of the two algorithms asymptotically
match.

6.2 Multi-Pass Emek-Rosén in Practice To
show that multiple passes improve resulting covers, and
for comparison with a GREEDY-like algorithm which
operates under the same computational model, we
prepared C++ implementations of both MULTI-PASS
EMEK-ROSEN and PROGRESSIVE GREEDY. We ob-
tained better results when using r; = (p—j) [logy A] /p
(rather than the theoretical threshold given in Sec-

tion for MULTI-PASS EMEK-ROSEN and 7; =
A'=I7FY) (rather than 7; = n'=7/(P+1) for PROGRES-

SIVE GREEDY, so we assume these thresholds hereafter.

We ran both algorithms on each of the data sets
given in Table [1| for each pass count from 1 to 16 us-
ing the same system described in Section The
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Figure 4: Solution quality comparison between MULTI-PAsS EMEK-ROSEN (dashed) and PROGRESSIVE GREEDY

(dotted), with DFG (p = 1.065, solid) for reference.

memory usage and (I/O-dominated) execution times
were very similar between the two algorithms for each
run; the main difference was solution quality. In Fig-
ure [4f we compare for each data set the cover sizes
given by MULTI-PASS EMEK-ROSEN and PROGRESSIVE
GREEDY, and show the solution size obtained by DFG
for reference. In each case, the solution sizes all tend
towards the result given by DFG, with the MuLTI-
Pass EMEK-ROSEN solutions typically converging in
fewer passes. We note also an inherent weakness of
MULTI-PASS EMEK-ROSEN: for a given data set, there
are at most [log, A] + 2 possible effectiveness values
(levels), therefore if the universe is partitioned by each
of these levels, the performance of the algorithm can-
not improve any further. With the effectiveness thresh-
old as formulated in our implementation, MULTI-PASS
EMEK-ROSEN reaches a steady final solution size after
[log, A] 4 1 passes, and any further passes are super-
fluous. Figure shows the contribution distribution
of a cover given by MULTI-PASS EMEK-ROSEN after
[log,(51)] 4+ 1 = 7 passes. By comparison to Figure
we see that there are fewer sets covering only one or two
elements; the distribution better matches that given by

DFG in Figure

7 Conclusions and Future Work

In this work, we have demonstrated that a stream-
ing approach to the Set Cover problem works well in
practice. We empirically compared the semi-streaming
EMEK-ROSEN algorithm to the state-of-the-art DISK
FRIENDLY GREEDY algorithm. We found that, at the
cost of slightly larger cover sizes, the EMEK-ROSEN al-
gorithm was able to approximate instances of the Set
Cover problem faster and using significantly less space
than Disk FRIENDLY GREEDY, giving a strongly pos-
itive answer to Emek and Rosén’s remark in their pa-
per [10] that the algorithm may be useful in practice.

In the last decade, a tremendous number of new
data streaming algorithms with provable guarantees
have been designed for large scale problems. Most of
these algorithms have never been implemented, which
we believe is a missed opportunity. We therefore
strongly advocate further research into the applicability
of recent data streaming algorithms, thereby bridging
the gap between theory and practice.
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A Proof of Lemma [4.2]
LEMMA A.1. For somer € Z, |S(r)| < n/2" 1.

Proof. See [10]. 0

LEMMA 4.2. For somer € R,

A
[S(>r)] < <2T_2 — 1) -|Opt|.

Proof. Consider Lemma which is given by Emek
and Rosén in their original analysis of the algorithm.
Summing this bound over the integer interval [|r| +
1, [log, A]] results in the converging series

[logy A]

no 1 1
Z or'—=1 n 2lr]-1 o 9[logy, AT—1

r'=|r]+1
<n L — i
2r=2 A

A
< (522 1) lowl,

where the final inequality follows from the observation
that |Opt| > n/A. |
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