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Example Set Cover Instance

A

B
C

D

E
F

G
H

I

U {A,B,C ,D,E ,F ,G ,H, I}
S {S0, S1,S2, S3,S4}

n = |U|, m = |S|, ∆ = max(|Si |) and M =
∑

i |Si |

Optimal cover: {S0,S2,S3}
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Memory Access

Direct access:

RAM

Algorithm
External Data

Storage
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Memory Access

Direct access:

RAM

Algorithm
External Data

Storage
Access

Bottleneck
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Memory Access

Streaming access:

RAM

Algorithm
External Data

Storage
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Accessing Sets

5

4

1

3 2

Direct access

1 2 3 4 5

Streaming access
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Greedy: Theory

Greedy

1. Find the set with the most uncovered elements

2. Add this set to the solution

3. Repeat until universe is covered

Approximation factor of O(ln n), which is essentially optimal [5, 3]
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Greedy: Implementation

Finding the set with the highest contribution

I Multiple passes over the input
I Sequential memory access
I Time complexity depends on solution size: O(M · |Solution|)

I Maintain a priority queue ...and an inverted index
I Time complexity of O(M logm)
I Complicated
I Precomputation step
I Inverted index doubles footprint
I Arbitrary memory access pattern

Alternatives?
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1: Disk Friendly Greedy (DFG) [2]

Aim: to access memory in large, contiguous chunks

Disk Friendly Greedy [2]

1. (Preprocess) Write sets to files on disk such that the kth file
contains all sets with sizes in the range [pk , pk+1)

2. For each file, starting with the one with the largest k :

2.1 Add sets to the solution if their contribution is at least pk

2.2 Remaining sets are reduced and reassigned to respective files

3. Sets in the final file are added if their contribution is non-zero

I Largely sequential access pattern

I Approximation factor of 1 + p ln n (close to optimal)

I Precomputation step

I Footprint still linear
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2: Streaming Set Cover: Emek-Rosén [4]

Aim: use Õ(n) := O(n polylog(n,m)) bits of working memory

Emek-Rosén [4]

1. Read set from stream

2. Find the maximal effective subset of this set

3. For each element in this subset:
I Set the effectiveness to the level of the subset
I Set the effectiveness identifier to that of the set

4. Repeat until stream terminates

I One-pass streaming algorithm

I Runs in O(M) time

I Uses only Õ(n) space

I Approximation factor of O(
√

∆) (this is optimal [4])

How does Emek-Rosén perform in practice?
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2: Streaming Set Cover: Emek-Rosén [4]

A

B
C

D

E
F

G
H

I

x A B C D E F G H I

eff(x) -1 -1 -1 -1 -1 -1 -1 -1 -1
eid(x) - - - - - - - - -
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2: Streaming Set Cover: Emek-Rosén [4]

Aim: use Õ(n) := O(n polylog(n,m)) bits of working memory

Emek-Rosén [4]

1. Read set from stream

2. Find the maximal effective subset of this set

3. For each element in this subset:
I Set the effectiveness to the level of the subset
I Set the effectiveness identifier to that of the set

4. Repeat until stream terminates

I One-pass streaming algorithm

I Runs in O(M) time

I Uses only Õ(n) space

I Approximation factor of O(
√

∆) (this is optimal [4])

How does Emek-Rosén perform in practice?
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Emek-Rosén in Practice
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Emek-Rosén in Practice

File name DFG (RAM) Emek-Rosén

accidents.dat 181 213
kosarak.dat 17 741 18 618
orkut-cmty.dat 149 244 158 439
webdocs.dat 406 338 413 819
twitter.dat 9 246 029 9 955 112
friendster.dat - 13 310 036

Table: Cover size
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Emek-Rosén in Practice

File name DFG (RAM) Emek-Rosén

accidents.dat 1.43 0.72
kosarak.dat 1.03 0.79
orkut-cmty.dat 15.44 12.35
webdocs.dat 18.39 15.51
twitter.dat 213.48 158.35
friendster.dat - 367.52

Table: Time (s)
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Emek-Rosén in Practice

File name DFG (RAM) Emek-Rosén

accidents.dat 66.65 0.91
kosarak.dat 75.45 2.37
orkut-cmty.dat 1094.59 21.67
webdocs.dat 1401.55 56.04
twitter.dat 8044.29 797.70
friendster.dat - 1183.56

Table: Peak RAM usage (MB)
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Emek-Rosén in Practice
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Generalising Emek-Rosén to Multiple Passes

Multi-Pass Emek-Rosén

1. Do an Emek-Rosén pass

2. Restrict the universe based on effectiveness

3. Repeat for p passes

.
.
.

.
.
.

U1

U2

U3

Up

Approximation factor of O(∆
1

p+1 )
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Multi-Pass Emek-Rosén in Practice
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Multi-Pass Emek-Rosén in Practice

Progressive Greedy [1]

1. Add all sets whose contribution is above a threshold

2. Reduce threshold

3. Repeat for p passes

Approximation factor of O(∆
1

p+1 )
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Multi-Pass Emek-Rosén in Practice

Results (1/3)
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Multi-Pass Emek-Rosén in Practice

Results (2/3)
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Multi-Pass Emek-Rosén in Practice

Results (3/3)
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Summary

I Emek-Rosén works well in practice

I Slightly larger covers
I Much smaller memory footprint
I Faster

I Solution quality can be improved with multiple passes
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